
**
BIRD ID#: TBD
ISSUE TITLE: Algorithmic Modeling API (AMI) Improvements
REQUESTER: (in alphabetical order by company)
 Adge Hawes, IBM;
 Arpad Muranyi, Mentor Graphics;
 Walter Katz, Mike Steinberger, Todd Westerhoff, SiSoft
DATE SUBMITTED:
Date of Draft: 02/23/2010
DATE REVISED:
DATE ACCEPTED BY IBIS OPEN FORUM: PENDING
**

STATEMENT OF THE ISSUE:

Based on the experiences of several EDA vendor and IC vendor implementations
of AMI models and EDA software using AMI models it has become apparent that
a number of changes to the document are required to correct the reference flow,
clarify the specification and simplify both the development of AMI models and EDA
software using AMI models.

Existing known AMI models and .ami files will work with these changes.

Section 6c and 10 are to be replaced with the following.

Summary of significant changes
Change Reference Flows
Remove Branches

Reserverd_Parameters
Model_Specific

Remove Reserved Parameters
Tx_Jitter
Rx_Clock_PDF

Add Reserved Parameters
Init_Returns_Filter

Remove Keywords
Format
Gaussian
Table
DjRj
Dual-Dirac

Add Keywords
Array

wkatz Page 1 2/24/2010

|===
|===
|
| Section 6c
|
| A L G O R I T H M I C M O D E L A P I S U P P O R T
|
|===
|===
|
| INTRODUCTION:
|
| Executable shared library files to model advanced Serializer-Deserializer
| (SERDES) devices are supported by IBIS. This chapter describes how
| executable models written for these devices can be referenced and used by
| IBIS files.
|
| The shared objects use the following keywords within the IBIS framework:
|
| [Algorithmic Model]
| [End Algorithmic Model]
|
| The placement of these keywords within the hierarchy of IBIS is shown in
| the following diagram:
|
| |-- [Component]
| | | ...
| | | ...
| | ...
| |-- [Model]
| | | ...
| | |-- [Algorithmic Model]
| | |-- [End Algorithmic Model]
| | | ...
| | ...
| | ...
|
| Figure 1: Partial keyword hierarchy
|
| GENERAL ASSUMPTIONS:
|
| This proposal breaks SERDES device modeling into two parts – electrical
| and algorithmic. The combination of the transmitter’s analog back-end, the
| serial channel and the receiver’s analog front-end are assumed to be linear
| and time invariant. There is no limitation that the equalization has to be
| linear and time invariant. The “analog” portion of the channel is
| characterized by means of an impulse response leveraging the pre-existing
| IBIS standard for device models.
|
| The transmitter equalization, receiver equalization and clock recovery
| circuits are assumed to have a high-impedance (electrically isolated)
| connection to the analog portion of the channel. This makes it possible to
| model these circuits based on a characterization of the analog channel.
| The behavior of these circuits is modeled algorithmically through the use
| of executable code provided by the SERDES vendor. This proposal defines the

wkatz Page 2 2/24/2010

| functions of the executable models, the methods for passing data to and
| from these executable models and how the executable models are called from
| the EDA platform.

| The parameter definition file (.ami) is an ASCII file that the EDA tool reads.
| The DLL does not read the .ami file. The EDA tool uses the contents of the .ami file to:
|
| Specify flows that the model supports.
| Configures the model for specific silicon implementations.
| Configures the model for specific model programming.
| Tells the EDA tool how to analyze the model output.
| Tells the EDA tool what parameters are returned from the model.
|
| AMI parameters are passed into the model and returned from the model using a parameter tree
| syntax. Please see section | 3.1.2.6 AMI parameters for a detailed description of the
| parameter tree syntax.
|
|
| In this section, a sub-parameter is a leaf under a parameter that describes the Type, Usage,
| Allowed Values, and Description of the parameter.
|
| A leaf is a parameter if the leaf only contains sub-parameters.
|
| The .ami file is in essentially the same format as the string passed into and returned
| from the model except that in place of the parameter value, the .ami file contains
| sub-parameters.
| The string passed into the model contains Usage In, and InOut parameters. The string passed
| back from the model contains Usage InOut and Out parameters.
|
| A parameter tree contains a root, branches and leaves. The leaves of the parameter tree are
| AMI Parameters. Only leaves may have sub-parameters, except that the root and branches may have
| the sub-parameter Description.
|
| AMI-Parameters can either be Reserved Parameters or Model Specific Parameter.
|
| A branch may not contain two leaves or branches of the same name.
|

| The root and branch names are case sensitive, and must start with a letter [a-Z], and may
| contain letters [a-Z], numbers [0-9], and underscore [_].
|
| Parameter names are case sensitive, and must start with a letter [a-Z], and may contain letters
| [a-Z], numbers [0-9], and underscore [_], except tap parameter leaves which must be a positive
| integer, negative integer or zero. By convention reserved parameters will be a leaf off the
| root and start with a capital letter [A-Z]. It is highly recommended that two parameter names
| should not differ by case alone.
|
| If a parameter has more than one sub-parameter, the order of the sub-parameters is unimportant.
|
| If a branch contains two or more branches or leaves, the order of the branches and leaves is
| not important
|
| The following sub-parameter names are not allowed parameter names.
|
| Type
| Usage
| Description

wkatz Page 3 2/24/2010

| Value
| Range
| List
| Labels
| Corner
| Increment
| Steps
| Default
| Array
|
|
| Sub-Parameter Definitions
|
| Usage: (Required)
| In Parameter is required Input to executable
| Out Parameter is Output only from executable
| Info Information for user or EDA platform
| InOut Required Input to executable. Executable may return a different
| value.
|
| Type: (Required)
| Float
| Can be specified as an integer, decimal number, or in exponential format.
| Integer
| Can be positive, negative or zero.
| String
| Strings begin and end with a double quote (") and no double quotes are
| allowed inside the string literals. A null string is denoted by “ “ or “”.
| Carriage Return <CR> and Line Feed <LF> and End of Line <EOL> are explicitly
| allowed.
|
| If a string references a file name, then there shall be no white space in the string
| and the Unix “/” shall delineate folders on all
| platforms including Windows.
| Boolean
| Values allowed are True and False.
| Tap
| The leaves of a branch represent Tx or Rx equalization coefficients.
| Values shall be Float
| UI
| Unit Interval, 1 UI is the inverse of the data rate frequency,
| for example 1 UI of a channel operating at 10 Gb/s is 100ps).
| When the values of a parameter that is type UI is passed to the DLL
| or returned from the DLL, the value should be in UI, not seconds.

| Allowed Value Methods: (Required for Info, In and InOut) and has to be one of the following

Each Usage In and InOut parameter has a single Value in the data passed to the DLL using
Parameters_In. An Allowed-Value is the method that the EDA tool can determine if it has one or
more than one allowed value for each parameter. If there is more than one allowed value, the EDA
tool can choose the value of this parameter automatically from the Allowed Values List, or it can
have the user select a value from the Allowed Values List. The EDA tool would generate an Allowed
Values List in accordance with the details for that Allowed Value Method. Similarly, the EDA tool

wkatz Page 4 2/24/2010

can determine the Allowed Value List for each Usage Info parameter. If there are more than one
value in the Allowed Value List the EDA tool can select that value automatically from the Allowed
Values List, or it can have the user select a value from the Allowed Values List. Usage Out
parameters need no Value at all. I think it should be optional to supply an Allowed Value for
Usage Out parameters, since the EDA tool has know way of knowing what the DLL will return.

| Value: <value> Single value data
| <value>=NA implies there is no constraint on the <value>
| NA is not allowed for Info, In or InOut parameters.
| Example .ami (Xyz (Value 5.))
| Example passed string (Xyz 5.)
| Range: <typ> <min> <max>
| <typ> >= <min>
| <typ> <= <max>
| <min> = NA means there is no lower limit to a value
| <max> = NA means there is no upper limit to a value
| Example .ami (Xyz (Range –1. –2. 4.)
| Example passed string (Xyz 3.)
| List: <value1> <value2> <value3> ... <valueN>
| Example .ami (Xyz (List 7 12 25 37 45))
| Example passed string (Xyz 37.)
| Labels: <label1> < label2> < label3> ... < labelN>
| Only allowed (and optional) when a parameter has a List sub-parameter
| Number of items in Lables must equal to number of items in List
| Example (List Xslow Slow Typ Fast Xfast)
| (Lables “Extremely Slow Process” “Slow Process”
| “Typical Process” “Fast Process” “Extremely Fast Process”)
| Corner: <typ value> <slow value> <fast value>
| Example .ami (Xyz (Corner 0 –1 1))
| Example passed string (Xyz 1)

| Increment: <typ> <min> <max> <delta>
| <typ> >= <min>
| <typ> <= <max>
| <min> = NA means there is no lower limit to a value
| <max> = NA means there is no upper limit to a value
| The allowed values of the parameter are
| typ+N*delta where N is any positive or negative integer
| value such that: min <= typ + N*delta <= max
| Example .ami (Xyz (Increment 50 NA 100 5))
| Example passed string (Xyz 55)
| Steps: <typ> <min> <max> <# steps>
| <typ> >= <min>
| <typ> <= <max>
| Treat exactly like Increment with
| <delta> == (<max>-<min>)/<# steps>
| Example .ami (Xyz (Steps 50 0 100 5))
| Example passed string (Xyz 55)

wkatz Page 5 2/24/2010

|
| Default <value>: (Optional)
| Depending on the Type, <value> will provide a default value for the
| parameter. For example, if the Type is Boolean, <value> could be True
| or False, if the Type is Integer, the <value> can be an integer value.
| Default is ignored if Allowed-Value is Corner.
| If Default is not specified, then the default value of a parameter shall depend
| on the Allowed-Value. If Default is specified then it must be a legal Allowed-Value.
| Value: <value>
| Range: <typ>
| List: <value1>
| Labels: NA
| Corner: <typ>
| Increment: <typ>
| Steps: <typ>

|
| Description “<string>“ : (Optional, Highly recommended for Model Specific)
| ASCII string following Description describes a reserved parameter,
| model specific parameter, a branch within the parameter tree
| or the Algorithmic model itself. It is used
| by the model make to convey information to the EDA platform and for the EDA platform
| to convey information to the end-user.
| The Description shall be a string defined between a pair of “’s.
| There shall be no limit on the length of a Description, or the number of lines
| in a Description.
| The location of Description will determine whether to description applies to a parameter,
| branch or model.
|
|
| Every (not Usage Out) parameter must have one, and only one of the following
| “Allowed-Value” sub-parameters:
| Value
| Range
| List
| Corner
| Increment
| Steps
|
| Note that in the context of Algorithmic Model for type ‘Corner’, <slow
| value> and <fast value> align implicitly to slow and fast corners, and
| <slow value> does not have to be less than <fast value>. For type ‘Range’
| and ‘Increment’, <min value>, <max value> does not imply slow and fast
| corners.
|
| Notes:
| 1. Throughout the section, text strings inside the symbols “<” and “>”
| should be considered to be supplied or substituted by the model maker.
| Text strings inside “<” and “>” are not reserved and can be replaced.
| 2. Throughout the document, terms “long”, “double” etc. are used to
| indicate the data types in the C programming language as published in
| ISO/IEC 9899-1999.
| 3. Throughout the section, text strings inside the symbols “[(” and “)]”
| indicate that the parameter definition is optional.
| 4. Previous versions of the AMI spec used the two-word keyword sequence Format
| along with the Allowed-Value keyword. These AMI files can be corrected for the

wkatz Page 6 2/24/2010

| new format by simply removing the keyword Format from the AMI file. No change to
| the DLL is required. These AMI files can be parsed for the new format by simply
| ignoring the keyword Format from the AMI file.
| 5. Previous versions of the AMI spec required all parameter be either in a
| Reserved Parameter branch, or a Model Specific branch. These AMI files can be
| corrected for the new format by simply removing the Reserved Parameter branch and
| Model Specific branch from the AMI file, thus moving all parameter definition to
| the root branch of the parameter tree. No change to the DLL is required. These
| AMI files can be parsed for the new format by simply moving all parameters in the
| the Reserved Parameter branch and Model Specific branch into the root branch of the
| tree.
|

IBIS-AMI Conventions
In

Parameters defined as Usage In are presented to the user in the EDA tool solution space if the user can
control them, then formatted and presented to the algorithmic model as part of the AMI_Init call. The EDA
tool does NOT perform any special processing on parameters defined as Usage In. A parameter defined as
Usage In cannot affect the results of Network Characterization, but may affect the results of both Statistical
and Time Domain simulation by changing the model’s output.

InOut
Parameters defined as Usage InOut are presented to the user in the EDA solution space if the user can
control them, then formatted and presented to the algorithmic model as part of the AMI_Init call. The
model may also report values for this parameter via the AMI Parameters_Out interface. The EDA tool may
simply report the data output by the model or may use it to perform additional processing, based on the
specific parameter in question. A parameter defined as Usage InOut cannot affect the results of Network
Characterization, but may affect the results of both Statistical and Time Domain simulation, either by
changing the model’s output or by affecting additional processing.

Out
The algorithmic model may report values for parameters defined as Usage Out via the AMI
Parameters_Out interface. Parameters defined as Usage Out are not presented to algorithmic models via
the AMI_Init call. If an Out parameter is included in a Parameter_In string,
either in error or due to noncompliance, the DLL is expected to ignore it.
The EDA tool may simply report the data output by the model or may use it to perform additional
processing, based on the specific parameter in question. A parameter defined as Usage Out cannot affect
the results of Network Characterization, but may affect the results of both Statistical and Time Domain
simulation by affecting additional processing.

Info
Parameters defined as Usage Info are presented to the user in the EDA solution space if the user can control
them and are used only by the simulator. These parameters may control the analysis flow, supply additional
data that gets factored into the analysis or control other aspects of the analysis. Parameters defined as
Usage Info are not presented to algorithmic models via the AMI_Init call. If an Out
parameter is included in a Parameter_In string, either in error or due to
noncompliance, the DLL is expected to ignore it. A parameter defined as Usage Info can affect
the results of Network Characterization, Statistical and Time Domain simulation.

wkatz Page 7 2/24/2010

|===
|
| KEYWORD DEFINITIONS:
|
|===
| Keywords: [Algorithmic Model], [End Algorithmic Model]
| Required: No
|
| Description: Used to reference an external compiled model. This compiled
| model encapsulates signal processing functions. In the case
| of a receiver it may additionally include clock and data
| recovery functions. The compiled model can receive and modify
| waveforms with the analog channel, where the analog channel
| consists of the transmitter output stage, the transmission
| channel itself and the receiver input stage. This data
| exchange is implemented through a set of software functions.
| The signature of these functions is elaborated in section 10
| of this document. The function interface must comply with
| ANSI ‘C’ language.
|
| Sub-Params: Executable
| Usage Rules: The [Algorithmic Model] keyword must be positioned within a
| [Model] section and it may appear only once for each [Model]
| keyword in a .ibs file. It is not permitted under the
| [Submodel] keyword.
|
| The [Algorithmic Model] always processes a single waveform
| regardless whether the model is single ended or differential.
| When the model is differential the waveform passed to the
| [Algorithmic Model] must be a difference waveform.
|
| [Algorithmic Model], [End Algorithmic Model]
| Begins and ends an Algorithmic Model section, respectively.
|
|
| Subparameter Definitions:
|
| Executable:
|
| Three entries follow the Executable subparameter on each line:
|
| Platform_Compiler_Bits File_Name Parameter_File
|
| The Platform_Compiler_Bits entry provides the name of the
| operating system, compiler and its version and the number of
| bits the shared object library is compiled for. It is a
| string without white spaces, consisting of three fields
| separated by an underscore ’_’. The first field consists of
| the name of the operating system followed optionally by its
| version. The second field consists of the name of the
| compiler followed by optionally by its version. The third
| field is an integer indicating the platform architecture. If
| the version for either the operating system or the compiler
| contains an underscore, it must be converted to a hyphen ‘-‘.
| This is so that an underscore is only present as a separation
| character in the entry.
|

wkatz Page 8 2/24/2010

| The architecture entry can be either “32” or “64”. Examples
| of Platform_Compiler_Bits:
|
| Linux_gcc3.2.3_32
| Solaris5.10_gcc4.1.1_64
| Solaris_cc5.7_32
| Windows_VisualStudio7.1.3088_32
| HP-UX_accA.03.52_32
|
| The EDA tool will check for the compiler information and
| verify if the shared object library is compatible with the
| operating system and platform.
|
| Multiple occurrences, without duplication, of Executable are
| permitted to allow for providing shared object libraries for
| as many combinations of operating system platforms and
| compilers for the same algorithmic model.
|
| The File_Name provides the name of the shared library file.
| The shared object library should be in the same directory as
| the IBIS (.ibs) file.
|
| The Parameter_File entry provides the name of the parameter
| file with an extension of .ami. This must be an external
| file and should reside in the same directory as the .ibs file
| and the shared object library file. It will consist of
| reserved and model specific (user defined) parameters for use
| by the EDA tool and for passing parameter values to the model.
| If there are multiple Executable lines in a [Algorithmic Model]
| they all must have the same Parameter File name.
|
| The model parameter file must be organized in the parameter
| tree format as discussed in section 3.1.2.6 of “NOTES ON
| ALGORITHMIC MODELING INTERFACE AND PROGRAMMING GUIDE”,
| Section 10 of this document.
|
| The Model Parameter File must be organized in the following
| way:
|
| (<my_AMIname> | Name given to the Parameter file
| |(This need not be the same as the basename
| | of the .ami file)

| (Parameter Text))
| ...

| (Description “<string>“) | description of the model
| | (optional)
|) | End my_AMIname parameter file
|
| Reserved Parameters:
|
| Init_Returns_Impulse (Required)
| GetWave_Exists (Required)
| Max_Init_Aggressors (Optional)
| Ignore_Bits (Optional)
| Use_Init_Output (Optional)

wkatz Page 9 2/24/2010

| Init_Returns_Filter (Optional)

| Tx_DCD (Tx only, Optional)
| Rx_Receiver_Sensitivity (Rx only, Optional)
|
|
| All reserved parameters must contain sub-parameters Usage, Type,
| and one of the Allowed-Values sub-parameters. Description is optional.
| Usage and Type may be options for certain reserved parameters.
|
| Init_Returns_Impulse:
|
| Init_Returns_Impulse is of usage Info and type Boolean. It
| tells the EDA platform whether the AMI_Init function returns
| a modified impulse response. Allowed-Values must be Value.
| When this value is set to True, the model returns either the impulse
| response of the filter, or the impulse response of the channel including
| the equalization of the filter depending on the value of Init_Returns_Filter.
| If GetWave_Exists is False, AMI_Init always returns a modified impulse response.
| If GetWave_Exists is True, the model writer may set
| Init_Returns_Impulse to False, and not return an impulse response. It is
| highly recommended that Tx models that have GetWave_Exists set to True
| also have Init_Returns_Impulse set to True and return a best estimate
| modified impulse response in order to maximize the effectiveness of
| Rx Ami_Init function that do internal optimization based on the channel and
| Tx equalization.
| Usage and Type are optional for Init_Returns_Impulse.
|
| Example of Init_Returns_Impulse declaration is:
| (Init_Returns_Impulse (Usage Info)(Type Boolean) (Value True))
|
| GetWave_Exists:
|
| GetWave_Exists is of usage Info and type Boolean. It tells
| the EDA platform whether the “AMI_GetWave” function is
| implemented in this model. Allowed-Value must be Value.
| Note that if Init_Returns_Impulse
| is set to “False”, then Getwave_Exists MUST be set to “True”.
| Usage and Type are optional for GetWave_Exists.
| Examples of GetWave_Exists declaration are:
| (GetWave_Exists (Usage Info)(Type Boolean) (Value True))
| (GetWave_Exists (Value True))
|
| Use_Init_Output:
|
| Use_Init_Output is of usage Info and type Boolean. It
| tells the EDA platform if it needs to combine the output of
| AMI_Init with the waveform. If the model AMI_GetWave is False
| the value of Use_Init_Ouput parameter must be True.
| If Use_Init_Output=True in a Tx model with an AMI_GetWave, then the
| output of the Tx AMI_GetWave needs to be convolved with the output of Tx
| AMI_Init, instead of convolved with the impulse response of the channel
| alone. If Use_Init_Output=True in a Tx model without an AMI_GetWave, then the
| output of the Tx stimulus waveform must be convolved with an impulse response
| that contains both the channel and the output of AMI_INIT.
| AMI_GetWave needs to be convolved with the output of Tx
| AMI_Init, instead of convolved with the impulse response of the channel

wkatz Page 10 2/24/2010

| alone. Use_Init_Output=True in an Rx model with an AMI_GetWave, then the
| input to the Rx AMI_GetWave needs to be convolved with the filter only
| component of the output of Rx AMI_Init. If Use_Init_Output is not
| specified in the .ami file then it is assumed to be False.
| Usage and Type are optional for Use_Init_Output.
| Allowed-Values must be Value.
| Examples of Use_Init_Output declaration is:
| (Use_Init_Output (Usage Info)(Type Boolean) (Value True))
| (Use_Init_Output (Value False))
|

|
| Init_Returns_Filter:

| Init_Returns_Filter is of usage Info and type Boolean. If it is True, then
| The AMI_Init function will return just the impulse response of the filter.
| If not set, or is False, AMI_Init will return only the impulse response
| of the filter convolved with the channel.
| Usage and Type are optional for Init_Returns_Filter.
| Examples of Init_Returns_Filter declaration are:
| (Init_Returns_Filter (Usage Info)(Type Boolean) (Value False))
| (Init_Returns_Filter (Value True))

| Max_Init_Aggressors:
|

 | Max_Init_Aggressors is of usage Info and type Integer.
| Allowed-Values must be Value. It Tells the EDA platform how many aggressor

| Impulse Responses the AMI_Init function is capable of processing.
| Usage and Type are optional for Max_Init_Aggressors.
| Example of Max_Init_Aggressors declaration is:
| (Max_Init_Aggressors (Usage Info)(Type Integer) (Value 25))
|
| Ignore_Bits:
|
| Ignore_Bits is of usage Info and type Integer. Allowed-Value
| must be Value. It tells the
| EDA platform how long the time variant model takes to complete
| initialization. This parameter is meant for AMI_GetWave
| functions that model how equalization adapts to the input
| stream. The value in this field tells the EDA platform how
| many bits of the AMI_Getwave output should be ignored.
| Examples of Ignore_Bits declaration are:
| (Ignore_Bits (Usage Info)(Type Integer) (Value 100))

|

| Tx_DCD:
|
| Tx_DCD (Transmit Duty Cycle Distortion) can be of Usage Info,
| or Out. It can be of Type Float and UI and can have
| Allowed-Value of Value, Range and Corner. It tells the EDA platform
| the maximum percentage deviation of the duration of a
| transmitted pulse from the nominal pulse width. This shall represent
| Clock DCD (alternating clock times shall be either early or late).
| Data edges occurring at early clock edges will be early, and data edges
| occurring at late clock edges will be late.
| If of type Float, then its units are in seconds.

wkatz Page 11 2/24/2010

| Example of Tx_DCD declaration is:
| (Tx_DCD (Usage Info)(Type UI) (Value .15))
|
|
| Rx_Receiver_Sensitivity:
|
| Rx_Receiver_Sensitivity can be of Usage Info, or Out and of
| Type Float and of Allowed-Value Value, Range and Corner.
| Rx_Receiver_Sensitivity is the voltage
| needed at the receiver data decision point to ensure proper
| sampling of the equalized signal. In this example, 100 mV
| (above +100 mV or below -100 mV) is needed to ensure the
| signal is sampled correctly. Units are in Volts.
|
| Example of Rx_Receiver_Sensitivity declaration is:
| (Rx_Receiver_Sensitivity (Usage Info)(Type Float) (Value .1))

|
|
| Model Specific Parameters:
|
| The Following section describes the user-defined parameters.
| The algorithmic model expects these parameters and their
| values to function appropriately. The model maker can specify
| any number of user defined parameters for their model.
|
| The user defined parameters must be in the following format:
|
| (<parameter_name> (usage <usage>) (Type <data type>)
| (Allowed Values)) [(Default <values>)]
| (Description “<string>”))
|
| A tapped delay line can be described by creating a separate
| parameter for each tap weight and grouping all the tap
| weights for a given tapped delay line in a single parameter
| group which is given the name of the tapped delay line. If in
| addition the individual tap weights are each given a name
| which is their tap number (i.e., "-1" is the name of the
| first precursor tap, "0" is the name of the main tap, "1" is
| the name of the first postcursor tap, etc.) and the tap
| weights are declared to be of type Tap, then the EDA platform
| can assume that the individual parameters are tap weights in
| a tapped delay line, and use that assumption to perform tasks
| such as optimization. The model developer is responsible for
| choosing whether or not to follow this convention.
|
| The type Tap implies that the parameter takes on floating
| point values.

|
| Array
| If a branch has multiple leaves, and one of the leafs is Array, and the value of
| Array is True, then the parameter tree that is passed into the model, and returned
| from the model will use the branch as the parameter name, and the values of all of the leaves
| of the branch that are Usage In or InOut (except the Array leafwill be passed as a white space
| delimited string (not surrounded by “’s). The order of the values of the leaves shall
| be in the order of increasing tap number or if they are not Type Tap, in the order that they

wkatz Page 12 2/24/2010

| appear as leaves in the branch. The parameter Array must be Usage Info, and Type Boolean.
| Usage and Type are optional for leaves with the name Array.

|
|===
| Example of Parameter File
|===
(mySampleAMI | Root Name of the Parameter Tree (Description "Sample AMI File")

 (Ignore_Bits (Usage Info) (Type Integer) (Value 21))
 (Max_Init_Aggressors (Usage Info) (Type Integer)(Value 25))
 (Init_Returns_Impulse (Usage Info) (Type Boolean)(Value True))
 (GetWave_Exists (Usage Info) (Type Boolean) (Value True))

 (txtaps
 (-2 (Usage InOut)(Type Tap) (Range 0.1 -0.1 0.2)
 (Description "Second Precursor Tap"))
 (-1 (Usage InOut)(Type Tap) (Range -0.2 -0.4 0.4)
 (Description "First Precursor Tap"))
 (0 (Usage InOut)(Type Tap) (Range 1.4 -1 2)
 (Description "Main Tap"))
 (1 (Usage InOut)(Type Tap) (Range 0.2 -0.4 0.4)
 (Description "First Post cursor Tap"))
 (2 (Usage InOut)(Type Tap) (Range -0.1 -0.1 0.2)
 (Description "Second Post cursor Tap"))
) | End txtaps
 (framis (Value NA) (Usage Out) (Type String) (Description "state of Tx framis"))
 (strength (Range 6 0 7) (Usage In) (Type Integer) (Description "IC Strength Register"))

) | End SampleAMI
|
| The EDA tool would pass the following string to the Model in the string pointed to by
| *AMI_parameters_in for the default value of each In and InOut parameter.
|
 (mySampleAMI (txtaps (-2 .05) (-1 -.1) (0 .7) (1 .1) (2 -.05)) (strength 6))
|
|
| The Model would pass the following string back to the EDA tool in the string pointed to by
| *AMI_parameters_out for the value of each Out and InOut parameter.
|
 (mySampleAMI (txtaps (-2 .06) (-1 -.05) (0 .8) (1 .05) (2 -.04)) (framis “Overloaded”))
|
|
| Array Example:
|
| The same as the previous example, but the txtaps branch is:
|
 (txtaps
 (-2 (Usage InOut)(Type Tap) (Range 0.1 -0.1 0.2)
 (Description "Second Precursor Tap"))
 (-1 (Usage InOut)(Type Tap) (Range -0.2 -0.4 0.4)
 (Description "First Precursor Tap"))
 (0 (Usage InOut)(Type Tap) (Range 1.4 -1 2)
 (Description "Main Tap"))

wkatz Page 13 2/24/2010

 (1 (Usage InOut)(Type Tap) (Range 0.2 -0.4 0.4)
 (Description "First Post cursor Tap"))
 (2 (Usage InOut)(Type Tap) (Range -0.1 -0.1 0.2)
 (Description "Second Post cursor Tap"))
 (Array (Usage Info)(Type Boolean) (Value True))
) | End txtaps
|
|
| The EDA tool would pass the following string to the Model in the string pointed to by
| *AMI_parameters_in for the default value of each In and InOut parameter.
|
 (mySampleAMI (txtaps .05 -.1 .7 .1 -.05) (strength 6))
|
|
| The Model would pass the following string back to the EDA tool in the string pointed to by
| *AMI_parameters_out for the value of each Out and InOut parameter.
|
 (mySampleAMI (txtaps .06 -.05 .8 .05 -.04) (framis “Overloaded”))

|
|===
| Example of RX model in [Algorithmic Model]
|===
[Algorithmic Model]
|
Executable Windows_VisualStudio_32 example_rx.dll example_rx_params.ami
|
[End Algorithmic Model]
|
|===
| Example of TX model in [Algorithmic Model]:
|===
[Algorithmic Model]
|
Executable Windows_VisualStudio_32 tx_getwave.dll tx_getwave_params.ami
Executable Solaris_cc_32 libtx_getwave.so tx_getwave_params.ami
|
[End Algorithmic Model
|
|===

wkatz Page 14 2/24/2010

The Section 10 addition is below:

|===
|===
|
| Section 10
|
| N O T E S O N
| A L G O R I T H M I C M O D E L I N G I N T E R F A C E
| A N D P R O G R A M M I N G G U I D E
|
|===
|===
|
| INTRODUCTION:
|
| This section is organized as an interface and programming guide for
| writing the executable code to be interfaced by the [Algorithmic Model]
| keyword described in Section 6c. Section 10 is structured as a reference
| document for the software engineer.
|
| TABLE OF CONTENTS
|
| 1 OVERVIEW
| 2 APPLICATION SCENARIOS
| 2.1 Linear, Time-invariant equalization Model
| 2.2 Nonlinear, and / or Time-variant equalization Model
| 2.3 Reference system analysis flow
|
| 3 FUNCTION SIGNATURES
| 3.1 AMI_Init
| 3.1.1 Declaration
| 3.1.2 Arguments
| 3.1.1 impulse_matrix
| 3.1.2 row_size
| 3.1.3 aggressors
| 3.1.4 sample_interval
| 3.1.5 bit_time
| 3.1.6 AMI_parameters (_in and _out)
| 3.1.7 AMI_memory_handle
| 3.1.8 msg
| 3.1.3 Return Value
| 3.2 AMI_GetWave
| 3.2.1 Declaration
| 3.2.2 Arguments
| 3.2.10 wave
| 3.2.11 wave_size
| 3.2.12 clock_times
| 3.2.13 AMI_memory
| 3.2.3 Return Value
| 3.3 AMI_Close
| 3.3.1 Declaration
| 3.3.2 Arguments
| 3.3.3 Return Value
| 3.3.13 AMI_memory
|

wkatz Page 15 2/24/2010

| 4 CODE SEGMENT EXAMPLES
|
|===
|
| 1 OVERVIEW
| ==========
|
| The algorithmic model of a Serializer-Deserializer (SERDES) transmitter or
| receiver consists of three functions: ‘AMI_Init’, ‘AMI_GetWave’ and
| ‘AMI_Close’. The interfaces to these functions are designed to support
| three different phases of the simulation process: initialization,
| simulation of a segment of time, and termination of the simulation.
|
| These functions (‘AMI_Init’, ‘AMI_GetWave’ and ‘AMI_Close’) should all be
| supplied in a single shared library, and their names and signatures must be
| as described in this section. If they are not supplied in the shared
| library named by the Executable sub-parameter, then they shall be ignored.
| This is acceptable so long as
|
| 1. The entire functionality of the model is supplied in the shared
| library.
| 2. All termination actions required by the model are included in the
| shared library.
|
| The three functions can be included in the shared object library in one of
| the two following combinations:
|
| Case 1: Shared library has AMI_Init, AMI_Getwave and AMI_Close.
| Case 2: shared library has AMI_Init and AMI_Close.
| Case 3: Shared library has only AMI_Init.
|
| Please note that the function ‘AMI_Init’ is always required.
|
| The interfaces to these functions are defined from three different
| perspectives. In addition to specifying the signature of the functions to
| provide a software coding perspective, anticipated application scenarios
| provide a functional and dynamic execution perspective, and a specification
| of the software infrastructure provides a software architecture
| perspective. Each of these perspectives is required to obtain
| interoperable software models.
|
|
| 2 APPLICATION SCENARIOS
| =======================
|
| 2.1 Linear, Time-invariant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given
| [Model] is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the [Model] is
| described at least in part by an algorithmic model.
|
| 3. The EDA platform loads the shared library or shared object file
| containing the algorithmic model, and obtains the addresses of the
| AMI_Init, AMI_GetWave, and AMI_Close functions.

wkatz Page 16 2/24/2010

|
| 4. The EDA platform assembles the arguments for AMI_Init. These
| arguments include the impulse response of the channel driving the
| block, a handle for the dynamic memory used by the block, the
| parameters for configuring the block, and optionally the impulse
| responses of any crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously
| prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory, places the address of the start of the dynamic memory in the
| memory handle. Depending on the value of Init_Returns_Filter, it
| either computes and returns the filter response of the block, or
| computes the impulse response of the channel modified by the filter
| response of the block.
|
| 7. The EDA platform completes the rest of the simulation/analysis using
| the impulse response from AMI_Init as a complete representation of
| the behavior of the given block combined with the channel, or makes
| use of the filter response returned by AMI_Init to compute the
| behavior of the given block combined with the channel.
|
| 8. Before exiting, the EDA platform calls AMI_Close, giving it the
| address in the memory handle for the block.
|
| 9. AMI_Close de-allocates the dynamic memory for the block and performs
| whatever other clean-up actions are required.
|
| 10. The EDA platform terminates execution.
|
|
| 2.2 Nonlinear, and / or Time-variant Equalization Model
| ===
|
| 1. From the system netlist, the EDA platform determines that a given
| block is described by an IBIS file.
|
| 2. From the IBIS file, the EDA platform determines that the block is
| described at least in part by an algorithmic model.
|
| 3. The EDA platform loads the shared library or shared object file
| containing the algorithmic model, and obtains the addresses of the
| AMI_Init, AMI_GetWave, and AMI_Close functions.
|
| 4. The EDA platform assembles the arguments for AMI_Init. These
| arguments include the impulse response of the channel driving the
| block, a handle for the dynamic memory used by the block, the
| parameters for configuring the block, and optionally the impulse
| responses of any crosstalk interferers.
|
| 5. The EDA platform calls AMI_Init with the arguments previously
| prepared.
|
| 6. AMI_Init parses the configuration parameters, allocates dynamic
| memory and places the address of the start of the dynamic memory in
| the memory handle. Depending on the value of Init_Returns_Filter,

wkatz Page 17 2/24/2010

| it either computes and returns the filter response of the block, or
| computes the impulse response of the channel modified by the filter
| response of the block. The EDA platform may make use of the
| impulse response or the filter response returned by AMI_Init in its
| further analysis if needed.
|
| 7. The EDA platform generates a time domain input waveform (stimulus)
| bit pattern. A long simulation may be broken up into multiple time
| segments by the EDA platform. For example, if a million bits are
| to be simulated, there can be 1000 segments of 1000 bits each, i.e.
| one time segment comprises 1000 bits.
|
| 8. For each time segment, the EDA platform calls the transmitter
| AMI_GetWave function, giving it the input waveform and the address
| in the dynamic memory handle for the block.
|
| 9. Depending on the value stored in the Use_Init_Output parameters,
| the EDA platform combines the output of the transmitter AMI_GetWave
| function with the output(s) of the AMI_Init function(s) with the
| impulse response of the channel and passes this result to the
| receiver AMI_GetWave function for each time segment of the
| simulation.
|
| 10. The output waveform of the receiver GetWave function represents the
| voltage waveform at the decision point of the receiver. The EDA
| platform uses this waveform to complete the simulation/analysis.
|
| 11. Before exiting, the EDA platform calls AMI_Close, giving it the
| address in the memory handle for the block.
|
| 12. AMI_Close de-allocates the dynamic memory for the block and performs
| whatever other clean-up actions are required.
|
| 13. The EDA platform terminates execution.
|
|
| 2.3 Reference system analysis flow
| ==================================
|
| System simulations will commonly involve both TX and RX algorithmic
| models, each of which may perform filtering in the AMI_Init call, the
| AMI_Getwave call, or both. Since both LTI and non-LTI behavior can be
| modeled with algorithmic models, the manner in which models are evaluated
| can affect simulation results. The following steps are defined as the
| reference simulation flow. Other methods of calling models and
| processing results may be employed, but the final simulation waveforms
| are expected to match the waveforms produced by the reference simulation
| flow.
|
|
| Step 1. The simulation platform obtains the impulse response for the
| analog channel. This represents the combined impulse response
| of the transmitter's analog output, the channel and the
| receiver's analog front end. This impulse response represents
| the transmitter's output characteristics without filtering, for
| example, equalization.
|

wkatz Page 18 2/24/2010

| Step 2. The output of Step 1 is presented to the TX model's AMI_Init
| call. If Init_Returns_Filter for the TX model is set to True,
| the model returns the impulse response of the TX filter. If it
| is set to False, the TX AMI_Init call returns the modified
| impulse response of the channel. The output of TX AMI_Init is
| returned to the EDA tool which decides how to make use of it
| depending on the transmitter’s Init_Returns_Filter and
| Use_Init_Output parameters.
|
| Step 3. If the transmitter’s Init_Returns_Filter parameter is set to
| False, the output of Step 2 is presented to the RX model's
| AMI_Init call. If the Init_Returns_Filter is set to True, the
| EDA tool will combine the output of Step 2 with the output of
| Step 1 (for example by convolution) before presenting it to the
| RX model’s AMI_Init call.
|
| Step 4. The output of Step 3 is presented to the RX model's AMI_Init
| call. If Init_Returns_Filter for the RX model is set to True,
| the model returns the impulse response of the RX filter. If it
| is set to False, the RX AMI_Init call returns the filtered
| response of the channel. The output of RX AMI_Init is returned
| to the EDA tool which decides how to make use of it depending
| on the receiver’s Init_Returns_Filter and Use_Init_Output
| parameters.
|
| Step 5. If the receiver’s Init_Returns_Filter parameter is set to
| False, the output of Step 4 may be presented to the user of the
| EDA tool, or the EDA tool can further process the results using
| statistical algorithms. If the Init_Returns_Filter is set to
| True, the EDA tool will combine the output of Step 4 with the
| output of Step 3 (for example by convolution) before presenting
| it to the user of the EDA tool, or before continuing with the
| statistical processing of these results.
|
| Step 6. The simulation platform produces a digital stimulus waveform. A
| digital stimulus waveform is 0.5 when the stimulus is “high”,
| -0.5 when the stimulus is “low”, and may have a value between
| -0.5 and 0.5 such that transitions occur when the stimulus
| crosses 0.
|
| Step 7. The output of step 6 is presented to the TX model's AMI_Getwave
| call. If the TX model does not include an AMI_Getwave call,
| this step is a pass-through step, and the input to step 7 is
| passed directly to step 8.
|
| Step 8. The EDA simulation platform combines (for example by
| convolution) the output of step 7 with the output of several
| different previous steps depending on the value of the
| transmitter’s and receiver’s Init_Returns_Filter and
| Use_Init_Output settings as follows:
|
| If TX Use_Init_Output = False, combine the outputs of Step 7
| and Step 1.
|
| If TX Use_Init_Output = True and TX Retuns_Filter = False,
| combine the outputs of Step 7 and Step 2.
|

wkatz Page 19 2/24/2010

| If TX Use_Init_Output = True and TX Retuns_Filter = True,
| combine the outputs of Step 7, Step 1 and Step 2.
|
| In addition, the EDA simulation platform will also combine the
| output of Step 4 with the above if RX Use_Init_Output = True.
| When RX Init_Returns_Filter = True, this is a relatively straight
| forward operation, but when RX Init_Returns_Filter = False, the
| EDA simulation platform will have to take additional steps to
| prevent the duplication of the content that is present in the
| output of Steps 2 and/or 3 (for example by deconvolution). This
| is why RX Init_Returns_Filter = True is preferred when RX
| Use_Init_Output = True.
|
| Step 9. The output of step 8 is presented to the RX model's AMI_Getwave
| call. If the RX model does not include an AMI_Getwave call,
| this step is a pass-through step, and the input to step 9 is
| passed directly to step 10.
|
| Step 10. The output of step 9 becomes the simulation waveform output at
| the RX decision point, which may be post-processed by the
| simulation tool or presented to the user as is.
|
| Steps 6 though 9 can be called once or can be called multiple times to
| process the full analog waveform. Splitting up the full analog waveform
| into multiple calls reduces the memory requirements when doing long
| simulations, and allows AMI_Getwave to return model status every so many
| bits. Once all blocks of the input waveform have been processed, TX
| AMI_Close and RX AMI_close are called to perform any final processing and
| release allocated memory.
|
|
| 3 FUNCTION SIGNATURES
| =====================
|
| 3.1 AMI_Init
| ============
|
| 3.1.1 Declaration
| =================
|
| long AMI_Init (double *impulse_matrix,
| long row_size,
| long aggressors,
| double sample_interval,
| double bit_time,
| char *AMI_parameters_in,
| char **AMI_parameters_out,
| void **AMI_memory_handle,
| char **msg)
|
| 3.1.2 Arguments
| ===============
|
| 3.1.2.1 impulse_matrix
| ======================
|
| Impulse matrix is the channel impulse response matrix. The impulse values

wkatz Page 20 2/24/2010

| are in Volts and are uniformly spaced in time. The sample spacing is given
| by the parameter ‘sample_interval’.

|
| The ‘impulse_matrix’ is stored in a single dimensional array of floating
| point numbers which is formed by concatenating the columns of the impulse
| response matrix, starting with the first column and ending with the last
| column. The matrix elements can be retrieved /identified using
|
| impulse_matrix[idx] = element (row, col)
| idx = col * number_of_rows + row
| row – row index , ranges from 0 to row_size-1
| col – column index, ranges from 0 to aggressors
|
| The first column of the impulse matrix is the impulse response for the
| primary channel. The rest are the impulse responses from aggressor drivers
| to the victim receiver.
|
| The impulse response of a short lossless channel is a rectangle with a
| width equal to sample_interval (in other words, one discrete sample) and
| a height of 1/sample_interval (to get the unit area).
| The impulse response of a short lossless channel would be element[0,0]=
| 1/sample_interval, element[n,0] = 0 for all n != 0. If the channel was lossless
| but had a length of 30.3 sample_intervals, then element[30,0]=.667/sample_interval,
| element[31,0]=.333/sample_interval, element[n] = 0 for all n != 30 and 31.
|
| The AMI_Init function may return a modified impulse response by modifying
| the first column of impulse_matrix. If the impulse response is modified,
| the new impulse response is expected to represent the concatenation of the
| model block with the blocks represented by the input impulse response
| if Init_Returns_Filter is False, or is not specified. If Init_Returns_Filter is True
| the AMI_Init function will return an impulse response of the model block only.
|
| The aggressor columns of the matrix should not be modified.
|
| 3.1.2.2 row_size
| ================
|
| The number of rows in the impulse matrix.
|
| 3.1.2.3 aggressors
| ==================
|
| The number of aggressors in the impulse matrix.
|
| 3.1.2.4 sample_interval:
| ========================
|
| This is the sampling interval of the impulse matrix. Sample_interval is
| usually a fraction of the highest data rate (lowest bit_time) of the
| device. Example:
|
| Sample_interval = (lowest_bit_time/64)

wkatz Page 21 2/24/2010

|
| 3.1.2.5 bit_time
| ================
|
| The bit time or unit interval (UI) of the current data, e.g., 100 ps, 200
| ps etc. The shared library may use this information along with the impulse
| matrix to initialize the filter coefficients.
|

wkatz Page 22 2/24/2010

| 3.1.2.6 AMI_parameters (_in and _out)
| =====================================
|

| Memory for AMI_parameters_in is allocated and de-allocated by the EDA platform. The
| memory pointed to by AMI_parameters_out is allocated and de-allocated by the model.
| This is a pointer to a string. All the input from the IBIS AMI parameter
| file are passed using a string that been formatted as a parameter tree.
|
| Examples of the tree parameter passing is:
|
| (dll
| (tx
| (taps 4)
| (spacing sync)
|)
|)
|
| and
|
| (root
| (branch1
| (leaf1 value1)
| (leaf2 value2)
| (branch2
| (leaf3 value3)
| (leaf4 value4)
|)
| (leaf5 value5 value6 value7)
|)
|)

See the following for a comprehensive definition of Tree Structure

 http://en.wikipedia.org/wiki/Tree_structure

Some more on “Leaf”

 http://en.wikipedia.org/wiki/Leaf_object

| Tree structure Definitions
| A leaf node of a tree structure has zero child nodes
| A non-leaf node is called a branch node
| The root node has no parent
| Leaf nodes are AMI Parameters
|
| Note that the only way a parameter can pass more than one value is if the
| parameter is a branch with the sub-parameter Array True.
|
| The syntax for this string is:
|
| 1. Neither names nor individual values can contain white space characters.
| White space (blank, tab, carriage return, and line feed) is allowed between a pair of
| double quotes delimiting a string.
| 2. Parameter name/value pairs are always enclosed in parentheses, with the
| value separated from the name by white space.

wkatz Page 23 2/24/2010

http://en.wikipedia.org/wiki/Leaf_object
http://en.wikipedia.org/wiki/Tree_structure

| 3. A parameter value in a name/value pair can be either a single value or a
| list of values separated by whitespace.
| 4. Parameter name/value pairs can be grouped together into parameter groups
| by starting with an open parenthesis followed by the group name followed
| by the concatenation of one or more name/value pairs followed by a close
| parenthesis.
| 5. Parameter name/values pairs and parameter groups can be freely
| intermixed inside a parameter group.
| 6. The top level parameter string must be a parameter group.
| 7. White space is ignored, except as a delimiter between the parameter name
| and value.
| 8. Parameter values can be expressed either as a string literal, Boolean, integer
| number or floating point number in the standard ANSI ‘C’ notation
| (e.g., 2.0e-9). String literal values are delimited using a double
| quote (") and no double quotes are allowed inside the string literals.
| White space (blank, tab, carriage return, and line feed) is allowed between a pair of
| double quotes delimiting a string.
| 9. A parameter can be assigned an array of values by enclosing the
| parameter name and the array of values inside a single set of
| parentheses, with the parameter name and the individual values all
| separated by white space.
|
| The modified BNF specification for the syntax is:
|
| <tree>:
| <branch>
|
| <branch>:
| (<branch name> <leaf list>)
|
| <leaf list>:
| <branch>
| <leaf>
| <leaf list> <branch>
| <leaf list> <leaf>
|
| <leaf>:
| (<parameter name> whitespace <value list>)
|
| <value list>:
| <value>
| <value list> whitespace <value>
| <value>:
| <string literals>
| <decimal number>
| <decimal number>e<exponent>
| <decimal number>E<exponent>
|

wkatz Page 24 2/24/2010

| 3.1.2.7 AMI_memory_handle
| =========================
|
| Used to point to local storage for the algorithmic block being modeled and
| shall be passed back during the AMI_GetWave calls. e.g. a code snippet may
| look like the following:
|
| my_space = allocate_space(sizeof_space);
| status = store_all_kinds_of_things(my_space);
| *sedes_memory_handle = my_space;
|
| The memory pointed to by AMI_handle is allocated and de-allocated by the
| model.
|
| 3.1.2.8 msg (optional)
| ======================
|
| Provides descriptive, textual message from the algorithmic model to the EDA
| platform. It must provide a character string message that can be used by
| EDA platform to update log file or display in user interface.
|
| 3.1.3 Return Value
| ==================
|
| 1 for success
| 0 for failure
|
| 3.2 AMI_GetWave
| ===============
|
| 3.2.1 Declaration
| =================
|
| long AMI_GetWave (double *wave,
| long wave_size,
| double *clock_times,
| char **AMI_parameters_out,
| void *AMI_memory);
|
| 3.2.2 Arguments
| ===============
|
| 3.2.2.1 wave
| ============
|

| An array of a time domain waveform, sampled uniformly at an interval
| specified by the ‘sample_interval’ specified during the init call. The
| wave is both input and output. The EDA platform provides the wave.
| The algorithmic model is expected to modify the waveform in place by
| applying a filtering behavior, for example, an equalization function,
| being modeled in the AMI_Getwave call.
|
| Depending on the EDA platform and the analysis/simulation method chosen,
| the input waveform could include many components. For example, the input
| waveform could include:
|

wkatz Page 25 2/24/2010

| - The waveform for the primary channel only.
| - The waveform for the primary channel plus crosstalk and amplitude noise.
| - The output of a time domain circuit simulator such as SPICE.
|
| It is assumed that the electrical interface to either the driver or the
| receiver is differential. Therefore, the sample values are assumed to be
| differential voltages centered nominally around zero volts. The
| algorithmic model's logic threshold may be non-zero, for example to model
| the differential offset of a receiver; however that offset will usually be
| small compared to the input or output differential voltage.
|
| The output waveform is expected to be the waveform at the decision point of
| the receiver (that is, the point in the receiver where the choice is made
| as to whether the data bit is a “1” or a “0”). It is understood that for
| some receiver architectures, there is no one circuit node which is the
| decision point for the receiver. In such a case, the output waveform is
| expected to be the equivalent waveform that would exist at such a node
| were it to exist.
|
| 3.2.2.2 wave_size
| =================
|
| Number of samples in the waveform array.
|
| 3.2.2.3 clock_times
| ===================
|
| Array to return clock times. The clock times are referenced to the start
| of the simulation (the first AMI_GetWave call). The time is always
| greater or equal to zero. The last clock is indicated by putting a value
| of -1 at the end of clocks for the current wave sample. The clock_time
| array is allocated by the EDA platform and is guaranteed to be greater
| than the number of clocks expected during the AMI GetWave call. The clock
| times are the times at which clock signal at the output of the clock
| recovery loop crosses the logic threshold. It is to be assumed that the
| input data signal is sampled at exactly one half bit_time after a
| clock time.
| (WMK Arpad may want to incorporate comments on the care that is needed to calculate
| clock_times because of numerical precision accumulation errors if not done carefully.
| Incrementing times by sample_interval can introduce errors in excess of
| one bit time after simulations > 10**8 bits.
|
|
| 3.2.2.4 AMI_parameters_out (optional)
| =====================================
|
| A handle to a ‘tree string’ as described in 1.3.1.2.6. This is used by the
| algorithmic model to return dynamic information and parameters. The memory
| for this string is to be allocated and deleted by the algorithmic model.
|
| 3.2.2.5 AMI_memory
| ==================
|
| This is the memory which was allocated during the init call.
|
| 3.2.2.6 Return Value
| ====================

wkatz Page 26 2/24/2010

|
| 1 for success
| 0 for failure
|
| 3.3 AMI_Close
| =============
|
| 3.3.1 Declaration
| =================
|
| long AMI_Close(void * AMI_memory);
|
| 3.3.2 Arguments
| ===============
|
| 3.3.2.1 AMI_memory
| ==================
|
| Same as for AMI_GetWave. See section 3.2.2.4.
|
| 3.3.3 Return Value
| ==================
|
| 1 for success
| 0 for failure
|
|
| 4 CODE SEGMENT EXAMPLES
| =======================
|
| extern long AMI_GetWave (wave, wave_size, clock_times, AMI_memory);
|
| my_space = AMI_memory;
|
| clk_idx=0;
| time = my_space->prev_time + my_space->sample_interval;
| for(i=0; i<wave_size; i++)
| {
| wave = filterandmodify(wave, my_space);
| if (clock_times && found_clock (my_space, time))
| clock_times[clk_idx++] = getclocktime (my_space, time);
| time += my_space->sample_interval;
| }
| clock_times[clk_idx] = -1; //terminate the clock array
| Return 1;
|
|***

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:

This section of the IBIS specification has been driven primarily by the
following factors:

1. The interaction between a SERDES and the system surrounding it is quite
complex, thus requiring sophisticated and detailed modeling.

2. There is considerable variation in the architectures and circuit

wkatz Page 27 2/24/2010

techniques used in SERDES devices.

3. There is not a commonly accepted set of parameters that can be measured to
fully and reliably characterize the performance of a given SERDES device
independently from the system that surrounds it.

Because of these factors, IP vendors' experience has been that customers use
the models delivered by the IP vendor as a form of performance specification.
If the model predicts a level of performance in a given application, then the
IP is held to that level of performance or better when the system is tested.

For this reason, IP vendors are reluctant to supply any but most detailed and
accurate models they can produce. This is a fundamental shift in that in the
past, the models that were presumed to be utterly complete and reliable were
SPICE models, and IBIS models were understood to be a useful approximation
that could be shared without divulging sensitive proprietary information.

By setting the algorithmic model as the primary deliverable, this
specification maximizes the flexibility available to the model developers
and also maximizes the degree of protection for proprietary information. By
standardizing the interface to these algorithmic models, this specification
also enables the required degree of interoperability.

**

ANY OTHER BACKGROUND INFORMATION

Reviewers: Bob Ross, Teraspeed; Michael Mirmak, Intel

REVISION HISTORY CHANGES:

Changes for Bird104.1

The text in Notes section just above the KEYWORD DEFINITION
| 2. Throughout the document, terms “long”, “double” etc. are used to
| indicate the data types in the ANSI ‘C’ programming language.
is replaced by
| 2. Throughout the document, terms “long”, “double” etc. are used to
| indicate the data types in the C programming language as published in
| ISO/IEC 9899-1999.

**

wkatz Page 28 2/24/2010

	Remove Branches
	Model_Specific
	Remove Reserved Parameters
	Rx_Clock_PDF

	Add Reserved Parameters
	Init_Returns_Filter

	Remove Keywords
	Add Keywords
	IBIS-AMI Conventions
	In
	InOut
	Out
	Info

